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1. Calculate the Fourier transform of the following functions (the residue theorem might be useful
for a few cases, but not in all of them):

(a) f(x) =
1

x2 − 2x+ 2
Hint: If you want, you can avoid lengthy computations by using the properties of the
Fourier transform and the fact that, as we computed in class last week,

F [
1

x2 + 1
](a) =

√
π

2
e−|a|.

(b) f(x) =
x

x4 + 1
.

(c) f(x) = e−|x| (in this case, you should get f̂(a) =
√

2
π

1
a2+1

; there are a few di�erent ways

to obtain this result).

2. Let f : R→ C be a piecewise continuous function satisfying
� +∞

−∞
|f(x)| dx < +∞ and

� +∞

−∞
|x · f(x)| dx < +∞.

Show that the Fourier transform of g(x) = x · f(x) is well-de�ned and satis�es

ĝ(a) = i
d

da
f̂(a).

Use this result to calculate the Fourier transform of f(x) = xe−|x|.

3. Consider the following ordinary di�erential equation:

y′′(x) + 2y′(x) + 5y(x) = e−|x|, x ∈ R. (1)

(a) By considering the Fourier transform of the above expression, �nd an expression for
F [y](a).

(b) By considering the inverse Fourier transform of the expression for F [y](a), determine a
solution y(x) to (1).

Remark. The equation (1) is 2nd order and has no initial or boundary value conditions, so
one would expect to have a 2-dimensional space of solutions, not just a single solution. This
is indeed true; however, among the solutions in this 2 dimensional space, only one goes to 0
as x → ±∞; this is the only one for which the Fourier transfor F [y] is well-de�ned (since for
the others the corresponding integral does not converge), and hence, this is exactly the one
which is �selected� by our method above. In other words, applying the Fourier transform to (1)
implicitly requires assuming that y(x) → 0 as x → ±∞ in order for the transform to be well
de�ned, and this corresponds to imposing two boundary conditions at x = ±∞.
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4. Use the various properties of the Fourier transform (i.e. about translations, re-scalings, fre-
quency shifts etc, as well as the property proved in Ex. 2) together with the table of Fourier
transforms given at the end of the sheet to calculate the Fourier transforms of the following
functions:

(a) f(x) =
eix

β2 + σ2x2
, β, σ ∈ R \ {0}.

(b) g(x) = x2e−β2x2
, β ∈ R \ {0}.

(c) h(x) =
x2 − 2x+ 1

(x2 − 2x+ 2)2
.

5. Using the properties of the Laplace transform that we saw in class, show that the indicated
γ0 ∈ R is an abscissa of convergence and compute the Laplace transforms of the following
functions f : [0,+∞) → C:

(a) f(t) = (t+ 1)3, γ0 = 0.

(b) f(t) = sin(ωt) (where ω ∈ R), γ0 = 0.

(c) f(t) = t2 cos(ωt) (where ω ∈ R), γ0 = 0.

(d) f(t) = cosh(ωt) (where ω ∈ R), γ0 = |ω|.

6. For two piecewise continuous functions f, g : [0,+∞) → C, we de�ne their convolution f ∗ g :
[0,+∞) → C by the relation

f ∗ g(t) .
=

� t

0

f(s)g(t− s) ds.

(a) Show that the above de�nition coincides with the usual de�nition of the convolution of
f, g : R→ C if we assume that f, g are extended on (−∞, 0) by the requirement that they
are identically 0 there.

(b) Show that the Laplace transform of f ∗ g satis�es

L[f ∗ g](z) = L[f ](z) · L[g](z)

for any z ∈ C for which L[f ] and L[g] are well-de�ned (Hint: Write down the expression
for the Laplace transform and use the (trivial) identity e−zt = e−zse−z(t−s)).
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